Liu-type shrinkage estimations in linear models
نویسندگان
چکیده
In this study, we present the preliminary test, Stein-type and positive part Liu estimators in linear models when parameter vector β is partitioned into two parts, namely, main effects β1 nuisance β2 such that β=(β1,β2). We consider case a priori known or suspected set of explanatory variables do not contribute to predict response so sub-model may be enough for purpose. Thus, interest estimate close zero. Therefore, investigate performance suggested asymptotically via Monte Carlo simulation study. Moreover, real data example evaluate relative efficiency estimators, where demonstrate superiority proposed estimators.
منابع مشابه
Liu-Type Logistic Estimators with Optimal Shrinkage Parameter
Multicollinearity in logistic regression affects the variance of the maximum likelihood estimator negatively. In this study, Liu-type estimators are used to reduce the variance and overcome the multicollinearity by applying some existing ridge regression estimators to the case of logistic regression model. A Monte Carlo simulation is given to evaluate the performances of these estimators when t...
متن کاملLiu Estimates and Influence Analysis in Regression Models with Stochastic Linear Restrictions and AR (1) Errors
In the linear regression models with AR (1) error structure when collinearity exists, stochastic linear restrictions or modifications of biased estimators (including Liu estimators) can be used to reduce the estimated variance of the regression coefficients estimates. In this paper, the combination of the biased Liu estimator and stochastic linear restrictions estimator is considered to overcom...
متن کاملJackknifed Liu-type Estimator in Poisson Regression Model
The Liu estimator has consistently been demonstrated to be an attractive shrinkage method for reducing the effects of multicollinearity. The Poisson regression model is a well-known model in applications when the response variable consists of count data. However, it is known that multicollinearity negatively affects the variance of the maximum likelihood estimator (MLE) of the Poisson regressio...
متن کاملShrinkage estimates for multi-level heteroscedastic hierarchical normal linear models
Empirical Bayes approach is an attractive method for estimating hyperparameters in hierarchical models. But, under the assumption of normality for a multi-level heteroscedastic hierarchical model, which involves several explanatory variables, the analyst may often wonder whether the shrinkage estimators have efficient asymptotic properties in spite of the fact they involve numerous hyperparamet...
متن کاملShrinkage Priors for Linear Instrumental Variable Models with Many Instruments
This paper addresses the weak instruments problem in linear instrumental variable models from a Bayesian perspective. The new approach has two components. First, a novel predictor-dependent shrinkage prior is developed for the many instruments setting. The prior is constructed based on a factor model decomposition of the matrix of observed instruments, allowing many instruments to be incorporat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistics
سال: 2022
ISSN: ['1029-4910', '0233-1888', '1026-7786']
DOI: https://doi.org/10.1080/02331888.2022.2055030